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Bulk dissipation of a sandpile on a square lattice with the periodic boundary condition is investigated
through a dissipating probability f during each toppling process. We find that the power-law behavior is broken
for f �10−1 and not evident for 10−1� f �10−2. In the range 10−2� f �10−5, numerical simulations for the
toppling size exponents of all, dissipative, and last waves have been studied. Two kinds of definitions for
exponents are considered: the exponents obtained from the direct fitting of data and the exponents defined by
the simple scaling. Our result shows that the exponents from these two definitions may be different. Further-
more, we propose analytic expressions of the exponents for the direct fitting, and it is consistent with the
numerical result. Finally, we point out that small dissipation drives the behavior of this model toward the
simple scaling.
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I. INTRODUCTION

Self-organized criticality �SOC� �1� as proposed by Bak,
Tang, and Wiesenfeld �BTW� provides a possible pathway to
understand the underlying mechanism of scaling behaviors
�2� in many natural phenomena �3�. The SOC models, which
automatically exhibit power-law behavior, are nonequilib-
rium systems with very few exact solutions. If we use the
traditional phase transition �4� to understand SOC, the source
problem of SOC is still a challenge, i.e., why a system with-
out tuning any parameters can arrive at the critical state with
power-law behavior. Basically, a SOC system is maintained
by a feedback mechanism that repeatedly receives energy in
a random fashion and dissipates energy in a specific way. In
a steady state, the input flow equals the dissipative flow on
average. In general, the dissipation is either through the
boundary or bulk. The BTW sandpile �1�, Manna sandpile
�5�, Olso rice pile model �6�, etc., are prototypical for bound-
ary dissipation, whereas the OFC earthquake �7� and the
fixed energy sandpile �8,9� involve bulk dissipation. In SOC,
the dissipation always plays important roles, e.g., determin-
ing the scaling behavior �10� in the BTW sandpile model,
destroying the universality class or criticality in the OFC
model �7�, fixing the total energy to discuss the source of
SOC �8,9�, etc. Both the source and critical exponents prob-
lems reveal how dissipations lead to a much better under-
standing of SOC.

The BTW sandpile model �1� was the first SOC model
and built by boundary dissipation. In this model, the distri-
butions of avalanche sizes were originally expected to ex-
hibit power-law behavior. However, Refs. �11,12� showed
that the avalanche size distributions may follow multifractal
scaling. The determination of the avalanche exponents thus
requires a more detailed analysis of the relaxation process.
One way for approaching this goal is to represent the whole

avalanche as a series of more elementary events and then
express the avalanche exponents through the exponents of
these elementary events. Such an approach was first intro-
duced by Dhar and Manna �13�. They performed a procedure
to decompose an avalanche into a series of elementary events
called inverse avalanches. Later, the wave of topplings �14�
were also successful in decomposing an avalanche through a
rearrangement of the toppling order. It has been showed that
both inverse avalanches and waves would lead to the same
representation �14�. Unlike avalanches, the wave of topplings
is not a standard observation of a sandpile and difficult to
relate to any real dynamics for SOC. However, Priezzhev et
al. established scaling relations between the wave and ava-
lanche exponents �15�. The avalanche exponents thus can be
expressed by the wave exponents which makes the usage of
waves effective. Based on the above statement and the inves-
tigation �16� in which waves have a clearer scaling form than
avalanches, the wave of topplings is a useful tool for under-
standing the behavior of a sandpile.

Compared with boundary dissipation, bulk dissipation is
seldom considered. In this paper, we investigate bulk dissi-
pation for a sandpile. Here, we use a modified version of the
BTW sandpile model, called the dissipative toppling �DT�
model, to investigate the effects of bulk dissipation. In the
DT model, a parameter f is used to control bulk dissipation
while the basic essence of the BTW sandpile is kept. The
reasons for choosing such a BTW-like model are as follows:
�i� The BTW sandpile has satisfactory theoretical results
�17–19�, which could be a basis for our DT model. �ii� Both
the DT model and the fixed energy sandpile �8� are built on
a lattice with the periodic boundary condition. The fixed en-
ergy sandpile can also be considered as a BTW-like model
but its bulk dissipation is different from that of the DT
model. The scaling correction effect of the fixed energy
sandpile was turned out to be effectively reduced because of
the possibility of using periodic boundary condition �8�. The
roles of dissipating way and boundary condition in scaling
behavior may be revealed further by studying the DT model.
�iii� The toppling rule of the DT sandpile is different from*Electronic address: lincy@phy.ccu.edu.tw
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that of the OFC model. Our result for the influence of bulk
dissipation on the exponents can be compared with that of
the OFC model.

From the above three points, applying the wave concept
to the DT sandpile with bulk dissipation may be a worth-
while effort in understanding the source and scaling behavior
of SOC. This paper is organized as follows. In Sec. II, we
establish the validness of the wave representation of the DT
sandpile. In Sec. III, the wave exponents defined by both
direct measurement and the simple scaling are obtained from
numerical simulations. The analysis of direct measurement
exponents for the wave are shown in Sec. IV. It is found that
the values of the exponents and equality among exponents
from simulations are consistent with analytic expressions.
Finally, we have a summary in Sec. V.

II. DISSIPATIVE TOPPLINGS SANDPILE MODEL

The original BTW sandpile is established on a L�L
square lattice �L2 sites�. Every lattice site is labeled by an
integer i and assigned a positive integer zi as its height,
where 1� i�L2. The height configuration of these L2 sites
C= �zi� characterizes the status of the sandpile. The critical
value zc=4 is the threshold of the sandpile toppling. There
are two conditions for a specified site j with height zj. When
zj �zc, site j is unstable and a dynamic process will take
place. This process called a toppling involves the grain ex-
change between site j and its four nearest neighbor �NN�
sites. The toppling rule is that site j sends four grains to its
NN sites and each NN site receives one grain. The math-
ematical formula is expressed as

zj → zj − 4,

zjk
→ zjk

+ 1, �1�

where site jk is the kth NN site of site j for k=1, 2, 3, and 4.
On the other hand, when zj �zc, site j is stable and zj will
remain unchanged, i.e., there is no dynamic process.

In the beginning of the sandpile evolution, the height zi is
restricted to 1�zi�zc. At first, one grain falls on a randomly
chosen lattice site called the initial site I. The height of this
initial site then increases by 1 �zI→zI+1�. If zI�zc, it trig-
gers a series of topplings where every unstable site topples
through Eq. �1�. The heights finally arrive at a configuration
�zi� with zi�zc for all i. This relaxation process, called an
avalanche, consists of a set of topplings. During an ava-
lanche, each site can topple many times and different sites
can topple different times. Therefore, an avalanche can be
marked by two toppling sizes: �i� the total number of top-
plings nava and �ii� the toppling area which is the number of
distinct sites toppled sava. Usually, this model is built on the
open boundary condition. That is to say, grains are allowed
to leave the system through the boundary.

After all lattice sites are stable, we repeat the sandpile
procedure by adding a grain to the system �I is reassigned a
new value for each adding procedure�. Continuing this add-
ing and toppling processes many times and then measuring
the probability distribution function of an avalanche size, for

example, nava, we expect P�nava��nava
−�nava, where P�nava� and

�nava
are the probability distribution and the exponent of top-

pling number for avalanches, respectively.
The BTW sandpile dissipates grains through the bound-

ary. If the BTW model is built on a L�L square lattice with
the periodic boundary condition, there is no loss and the
added grains will stay in the system. Consequently, it will
lead to an infinite nava for a finite system, i.e., the toppling
process cannot stop. This result renders us unable to do the
adding procedure for the next stage because the system can-
not arrive at a stable height configuration. In our study, we
consider a BTW-like sandpile with dissipations during each
toppling process. We call this model the dissipative topplings
�DT� sandpile model. There is a dissipating probability f
such that one specific NN site jk of an unstable site j does not
receive a grain during the toppling process of site j. The
toppling rule of the DT model is expressed as

zj → zj − 4,

zjk
→ �zjk with probability f ,

zjk
+ 1 with probability 1 − f ,

�2�

where zjk
→zjk

and zjk
→zjk

+1 correspond to a dissipative
dynamics and a conservative �nondissipative� dynamics, re-
spectively. Note that our DT model is built on a lattice with
the periodic boundary condition. No grain can leave through
the boundary. The bulk dissipation of the DT model is dif-
ferent from that of the fixed energy sandpile model �8� which
also possesses the periodic boundary condition. The fixed
energy sandpile dissipates one grain after one avalanche fin-
ishes. There are two ways for dissipating a grain. �i� Random
subtract. A random site is chosen to lose one grain. �ii� Con-
tinuous subtract: Every site i loses grains. The lost grain
number of each site is proportional to the local height and the
total number of the lost grain is exact one. On the other hand,
the DT dissipates unrestraint units of grain during the top-
plings of an avalanche through Eq. �2�.

The operators for sandpile al and bl denote that a grain is
subtracted from and added to site l, respectively. They are
expressed as

al:zl → zl − 1,

bl:zl → zl + 1. �3�

For example, m grains are subtracted from site l �zl→zl

−m� and added to site l �zl→zl+m� correspond to �al�m and
�bl�m, respectively. In Eq. �2�, zj→zj −4, zjk

→zjk
and zjk

→zjk
+1 are expressed as �aj�4, �bjk

�0, and �bjk
�1, respec-

tively. The toppling rule of site j in the DT sandpile thus can
be characterized by the operator Aj�Q�= aj

4�bj1
�q1 �bj2

�q2

�bj3
�q3 �bj4

�q4, where Q= �q1 ,q2 ,q3 ,q4� and qk� 0 or 1. From
Eq. �2�, the probability of site j having the toppling rule with
parameter Q, prob�Aj�Q��, is
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prob�Aj�Q�� = 	
k=1

4

�f��0,qk����1 − f���1,qk�� , �4�

where � is the Kronecker-Delta function. For example, site j
with the toppling rule of the BTW shown in Eq. �1� corre-
sponds to Q= �q1 ,q2 ,q3 ,q4�= �1,1 ,1 ,1�. The probability of
such a toppling rule is �1− f�4. Note that the Eq. �4� is ap-
plied at every toppling process. It is not picked once for
every site at the beginning of the simulation. Generally
speaking, there are 24 kinds of toppling rules in the DT
model.

Consider C0 as an intermediate height configuration which
possesses unstable sites v1, v2 , . . ., etc. We use �vr�C0

to rep-
resent the set of unstable sites, where r is the label of the
unstable sites. The system will topple and then finally arrive
at a stable height configuration C f. Different toppling order
for these unstable sites of C0 will result in the same C f. This
inference can be explained by the topplings of any two of
unstable sites. If sites 	 and 
 are two of the unstable sites of
C0 with 	 and 
 ��vr�C0

, the height should satisfy z	�zc and
z
�zc. These two sites topple through their toppling opera-
tors A	�Q	� and A
�Q
�, respectively, where Q	 and Q
 are
two specified choices of Q. If we let site 
 topple first and
then let site 	 topple, the height configuration becomes C�=
A	�Q	�A
�Q
�C0. It is obvious that C�=A	�Q	�A
�Q
�C0

=A
�Q
�A	�Q	�C0. Therefore, changing the toppling order of
unstable sites for an intermediate height will result in the
same configuration C f.

Suppose that 	� �vr�C0
. If we topple all unstable sites of

C0 except site 	 �i.e., �vr�C0
− �	��, the system arrives at an-

other intermediate height C1 which has unstable site set �vr�C1
with 	� �vr�C1

. Changing the toppling order for C1 will not
affect the final height C f. Now, we still topple all unstable
sites of C1 except site 	 ��vr�C1

− �	��and then arrive at C2

with unstable site set �vr�C2
with 	� �vr�C2

. Continue this
process for T times. If CT has only one unstable site 	
��vr�CT

= �	��, we call this way of topplings from C0 to CT “the
freezing procedure” of site 	. This procedure, which in-
volves the changing of the toppling order of unstable sites
for each stage of an intermediate configuration, will not
change the final configuration C f.

Consider the following process of topplings called “wave
of topplings.” If the initial site I to which a grain was added
becomes unstable, topple it once, and then topple all other
sites of the lattice that become unstable. During this process,
we must keep the initial site I from a second toppling �20�.
That is to say, we do the freezing procedure for 	= I. The set
of sites toppled is called “the first wave.” After the first wave
is completed, site I is then allowed to topple the second time,
and is not permitted to topple again �i.e., do the freezing
procedure with 	= I� until the second wave is finished. This
process continues and generates the third, fourth,¼,waves.
After the topplings of the �th wave, site I finally becomes
stable. We call the �th wave “the last wave.” Through the
above procedure, the topplings of a series of waves just re-
arrange the toppling order of an avalanche. An avalanche can
be decomposed into a series of waves.

A stable sandpile system with height zi=h�i� is triggered
by adding one grain to site I, where 1�h�i��4. During an
avalanche, the received grain number from adding process is
N0�i�, where N0�i�=1 for i= I and N0�i�=0 for i� I. Suppose
site j, which has received M�t��jk , j� grains from its kth NN
site, is ready to experience the tth toppling. We have

N0�j� + N1
�t��j� + h�j� − 4t � 1, �5�

where N1
�t��j�=M�t��j1 , j�+M�t��j2 , j�+M�t��j3 , j�+M�t��j4 , j� is

the received grain number for site j from its NN sites and 4t
is the lost grain number for site j after its tth toppling. In the
DT model, due to the bulk dissipation, M�t��jk , j� is smaller
than or equal to the toppling number of site jk.

Consider that the sites IA, IB,¼, are the leading sites of
t=2 which means these sites can first finish the second
toppling. That is to say, sites IA, IB,¼, topple twice simul-
taneously and at the same time other sites cannot topple the
second time. Before this time that site IA topples the second
time, all sites of system have toppled at most once. If site IAk

is the NN site of site IA, we have N1
�2��IA�=M�2��IA1 , IA�

+M�2��IA2 , IA�+M�2��IA3 , IA�+M�2��IA4 , IA�. Then,
N1

�t=2��IA��4 because 0�M�t=2��IAk , IA��1. After receiving
N0�IA�+N1

�2��IA� grains, site IA should be ready to satisfy
Eq. �5� with t=2. From Eq. �5�, N0�IA��1−N1

�2��IA�
−h�IA�+8�1 must hold. However, N0�IA��1 only holds
for IA= I. We conclude that there is only one leading site of
t=2 and this site is the initial site I. Therefore, if site I is not
allowed to topple twice, every site topples at most once.
From the definition of the first wave, any toppling site
topples exactly once for the first wave.

After the first wave is finished, the height configuration
arrives at zj =zj

*�4 for j� I and zj =zj
*=5 for j= I �if the

second wave exists�. This situation is exactly the same as a
system, with the stable height h�j�=zj

* for j� I and h�j�=zj
*

−1 for j= I, is added a grain to site I. Now, a new avalanche
happens in this system. If we use the Eq. �5� with t=2 to this
new avalanche again, the toppling sites of the first wave of
this new avalanche topples exactly once. However, the first
wave of this new avalanche is the second wave of the origi-
nal avalanche. Continuing this same argument for the third,
the fourth,¼, waves, we can conclude that any toppling site
topples exactly once for a wave �14�.

In general, an avalanche must be marked by the toppling
area sava and the toppling number nava. The toppling area and
the toppling number of a wave are denoted by s and n, re-
spectively. Based on the above discussion, however, a wave
can be simply characterized only by the toppling area s �s
=n for a wave�. This feature along with the better scaling
gives the reasons why we use waves but not avalanches for
characterizing sandpiles in this study �21�.

In this work, in order to study the effects of bulk dissipa-
tion on a sandpile system, we calculate the probability dis-
tribution functions for three categories of waves. �i� All
waves: This is the general feature of sandpile dynamics.
Here, every toppling site topples through one of 16 kinds of
toppling rules. �ii� Dissipative waves: It describes the role of
dissipation. The definition is given by a wave containing at
least one dissipative toppling which corresponds to the rule
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zjk
→zjk

of Eq. �2�. That is to say, a dissipative toppling has a
toppling parameter of Q= �q1 ,q2 ,q3 ,q4� with constraint
	k=1

4 qk=0. There are 15 kinds of toppling rules for a dissipa-
tive toppling. �iii� Last waves: The end of topplings, which
refers to the last waves, is due to two mechanisms, grain
redistribution and dissipation. Therefore, the last wave is an
auxiliary index for the effects of dissipation.

III. NUMERICAL RESULTS

Our simulations for the DT model are on a L�L square
lattice for L=1000 with the periodic boundary condition,
which assures that the grain dissipation is only through bulk
dissipation. 5�106 grains are randomly added for each f
=a�10−b with the constraint f �0.1, where a=1, 2, and 5
and b=2, 3, 4, and 5. In order to sample the data of the
critical states, we take the data of the latter 4�106 grains.
When one grain is added to an initial site I with zI=4, zI
becomes 5. Site I will trigger a series of topplings with top-
pling number nava. The expected number of dissipated grains
is 4navaf , which can be realized from Eq. �2�. In the steady
state, the average number of added grains is equal to that of
dissipated grains. Extending this statement to one avalanche
process, we expect that the mean toppled number n̄ava for an
avalanche satisfies �prob�zI=4���4n̄avaf�=1, where prob�zI

=4� is the probability of zI being 4. That is n̄ava� f−1 since
prob�zI=4� is a constant when the system has reached the
steady state.

Now we turn to the wave where s=n. In general, the mean
toppling area sx is related to the lattice size L and the dissi-
pating probability f , where x=a �all waves�, d �dissipative
waves�, and l �last waves�. In Fig. 1, we show the mean

toppling area sx as a function of f for x=a, d, and l. It is
worth noting that sd� f−1, sa� f−0.89, and sl� f−0.63. There is
no grain added for successive waves during an avalanche.
Unlike the case of the avalanche, we cannot conjecture sx
� f−1 for a wave. However, sd for a wave has the same func-
tion form as nava for an avalanche. It reveals that dissipative
waves should play a pivotal role in the dynamics of the DT
model. In the BTW sandpile on a L�L lattice with the open
boundary condition, grain dissipation is only through the
boundary. Therefore, we expect the sx is a function of L. If a
DT model is built on a lattice with the open boundary, grains
can leave the system by both boundary and bulk dissipations.
Again, we can expect that sx=sx�L , f�. Our DT model is built
by the periodic boundary condition which reduces the effect
of L on sx. Furthermore, if sx�L2, the finite size effect �L� is
overshadowed by the effect of the bulk dissipation effect �f�.
We expect that sx=sx�f� �22�. In the case L=1000, we find
that sx�L2 for f �10−5 shown in Fig. 1. Therefore, we ex-
pect that sx=sx�f� for f �10−5.

To determine the critical exponents, we first calculate the
probability distributions function Px�s , f� as a function of s at
f =10−1, 10−2, and 10−5, where x=a ,d, and l. In general, the
probability distribution function in a critical system should
consist mainly of two parts: a power-law decay �the main
body� and an exponential decay �the tail�. Usually, the
power-law decay only holds in a range �sm1 ,sm2�, where sm1

and sm2 are the lower and upper cutoffs, respectively. In gen-
eral, sm1 is the order of lattice constant and sm2 can be con-
sidered as the border between power-law decay and expo-
nential decay. In order to determine the asymptotic behavior
of Px�s , f�, we define the direct measurement for an exponent
as the following form:

Px�s, f� = �cxs
−�x for sm1 � s � sm2,

�s, f� for s � sm2,
�6�

where �x is the exponent of the direct measurement, cx�f� is
independent of s, and �s , f� varies as or faster than an ex-
ponential decay for a fixed f . In Fig. 2, it is evident that the
power-law behaviors are valid, except in the case f =10−1

which is dominated by the tail. Therefore, two constraints in
our simulations, which keep the clearer power-law behav-
iors, should be noted: �i� f �10−2. If f �10−2, the sx or
�sm1 ,sm2� is too small, i.e., the power-law behavior is not
obvious. �ii� f �10−5. sx, sm2, and �x will depend on both L
and f . However, if we restrict that sx�L2 �22�, sm2=sm2�f�
and �x=�x�f� will not depend on L. In this paper, because
we only focus on bulk dissipation, we have such constraints
listed in �i� and �ii�. If we take a larger L, f is allowed to be
much smaller.

If Px�s , f� satisfies the standard form of the simple scaling,
both power-law and tail parts of Eq. �6� can be described by
the following form:

Px�s, f� = s−�xGx�sfDx� = f�xDxGx��sfDx� for f � fx
c, �7�

where fx
c �depends on the microscopic details of the model� is

an index for the correction of simple scaling �23�, �x�1 �24�
and Dx are two independent critical exponents Gx�u� and
Gx��u� are the scaling functions with u=sfDx. In order to dis-

FIG. 1. Mean toppling sizes sx as a function of f for all waves
x=a ���, dissipative waves x=d ���, and last waves x=d ���. The
slopes for sa, sd, and sl are −0.89, −1.00, and −0.63, respectively. In
the inset, we show �x as a function of q.
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tinguish between �x and �x for the work in this paper, we
specifically consider two scaling functions in the power-law
region by the following form:

Gx�u� � u−�x,

Gx��u� � u−�x for sm1fDx � u = sfDx � sm2fDx, �8�

where �x and �x are two exponents. From the comparison
among Eqs. �6�–�8�, we have that �x=�x−�x and �x=�x.
Since �x, Dx, �x, and �x are constants, it also implies that
�x�f� for f � fx

c should be nearly a constant. The condition
that �x=�x �25� will hold only for the case Gx�u� with �x

=0 and f � fx
c. Through a direct calculation, the qth moment

of Px will satisfy that

sx
q =
 sqPx�s, f�ds = f−Dx�q−�x+1� 
 uq−�xGx�u�du � f−�x�q�,

�9�

where �x�q�=Dx�q−�x+1� for q��x−1 �12�. In the Fig. 1,
we have already obtained that �x�1� corresponds to 0.89 �sa�,
1.00 �sd�, and 0.63 �sl� for x=a, d, and l, respectively. In the
inset of Fig. 1, we show the values of �x�q� from q=1 to 7.
We find the slopes of �x as a function of q are all 1 for x
=a, d, and l. Therefore, if Px satisfies Eq. �7�, we have Dx
=1 for x=a, d, and l. Furthermore, the simple scaling form
of Eq. �7� can also be described by another two exponents
�x�1� and Dx as

Px�s, f� = f2Dx−�x�1�Gx��sfDx� . �10�

Finally, the universality class is determined by the critical
exponents �x and Dx. On the other hand, if Px�s , f� satisfies

the multifractal scaling form �26�, the universality class can-
not be described by a finite set of exponents. There is no
such an expression �x�q�=Dx�q−�x+1� for constants Dx and
�x �12�.

Another important issue about the simple scaling is the
scaling correction �23,27�. Such a problem arises from the
fact that Eq. �7� considers only the dominant exponents.
Considering the subdominant exponents which will appear
obviously for a large f , we should have corrections to Eq.
�7�. In other words, there exists a fixed number fx

c such that
Px�s , f� satisfies Eq. �7� for f � fx

c and deviates from Eq. �7�
for f � fx

c. In our model, we can expect �x�f� is nearly a
constant for f � fx

c, but not a constant for f � fx
c. The deter-

mination of fx
c needs more assumptions on the scaling behav-

ior, e.g., the consideration in Ref. �23�.
In Fig. 3�a�, we show the probability distribution of all

waves Pa�s , f� as a function of s for f =10−2, 10−3, 10−4, and
10−5. We also plot Pa�s , f� as a function of sf in the inset of
Fig. 3�a�. For each curve, we find a power-law main body,
i.e., Pa�s , f��s−�a�f�, where �a�f� is the wave size exponent
of all waves for direct measurement. In Fig. 3�a�, we fit the
power-law behavior in the s axis from s=sf1 to s=sf2. The
fitting intervals �sf1 ,sf2� are taken by �22 ,26�, �22 ,29�,
�22 ,213�, and �22 ,216� for f =10−2, 10−3, 10−4, and 10−5, re-
spectively. We find that �a�f�=1 for each f , i.e., it is inde-
pendent of f within error bars. In addition, this value is iden-
tical to the value of �a=1 �28� in the BTW sandpile.

If Pa�s , f� satisfies the simple scaling with expression
�a�q�=Da�q−�a+1�, such a simple scaling has �a�1�=0.89
and Da=1 shown in the inset of Fig. 1. It leads to �a=2
−�a�1� /Da=1.11. Using Eq. �10� to plot Ga��sfDx�
= f�a�1�−2DaPa�s , f�= f−1.11Pa�s , f� as a function of sfDa =sf in
Fig. 3�b�, we find that these four curves are nicely collapsed,
i.e., Ga��u� may exist. It also shows that Ga��u��u−1.0=u−�a,
i.e., �a=�a=1. For another scaling function, we plot
s�aPa�s , f�=s1.11Pa�s , f�=Ga�u� as a function of u=sf in Fig.
3�c�. We find that Ga�u��u−�a with �a=−0.11 which con-
firms that �a=�a−�a. In Table I, we list the values for Da, �a,
�a, and �a.

In Fig. 3�a�, we expect sm1 is a constant for every f . Fur-
thermore, we observe that sm2f is a constant, which is veri-
fied in Fig. 3�b� or the inset of Fig. 3�a�. Therefore,
�sm1 ,sm2�= �ka1 ,ka2 / f�, where ka1 and ka2 are constants. From
the definitions of �sm1 ,sm2� and �sf1 ,sf2�, the fitting range
�sf1 ,sf2� should be as close as �sm1 ,sm2�. In our fitting,
�sf1 ,sf2� satisfies sf1=ka1 but does not satisfy sf2=ka2 / f for
each f . The reason is that we have only the data for s=2r

where r is a non-negative integer. However, taking ka1=4
and ka2=0.64, in the sense of a log-log plot, we obtain
�ln�sf1� , ln�sf2����ln�sm1� , ln�sm2�� for each f .

In Fig. 4�a�, we show the probability distribution of dis-
sipative waves Pd�s , f� as a function of sf . The fitting inter-
val �sf1 ,sf2� of the power-law behavior Pd�s , f��s−�d�f� is for
calculating �d from sf1 to sf2. We choose �sf1 ,sf2�= �22 ,25�,
�22 ,28�, �22 ,212�, and �22 ,215� for f =10−2, 10−3, 10−4, and
10−5, respectively. Contrary to �a, �d has different values for
different values of f . We find �d=0.24, 0.13, 0.07, and 0.04
for f =10−2, 10−3, 10−4, and 10−5, respectively. The depen-

FIG. 2. The probability distribution Px�s , f� for f =10−1 �solid
lines�, 10−2 �dotted lines�, and 10−5 �dash lines�, where x=a, d, and
l represent all waves, dissipative waves, and last waves,
respectively.
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dence between �d and f shows that �d�f� is a monotonically
increasing function.

From the data of the inset of Fig. 1, if Pd�s , f� satisfies
simple scaling with �d�q�=Dd�q−�d+1�, we have �d�1�=1,
Dd=1, and �d=1. Using the scaling form of Eq. �10�, we plot
f�d�1�−2DdPd�s , f�= f−1Pd as a function of u=sf shown in Fig.
4�b�. We find that the tail parts of f−1Pd for various f nicely
collapse together but the power-law parts do not work so
nicely. The reason is that �d is not a constant for f−1Pd
��sf�−�d. It also implies that the consideration of the correc-
tion to scaling is necessary. In the next section, we expect
that �d→0 as f →0. Therefore, it is reasonable to predict
that the scaling function Gd��u� with �d=0. There is a trend
for that all sets of data collapse to �d=0 in Fig. 4�b�.

In Fig. 4�c�, we plot s�dPd�s , f� as a function of u=sf .
Compared with Fig. 3�c� with �a=−0.11, s�dPd�s , f� has a
steeper slope in the power-law region. We expect that �d
=�d−�d=−1. This explains why �d is very different from the
direct measurement exponent �d because �d has large devia-
tion from 0. In Table I, we list the values for Dd, �d, �d, and
�d. Since for each f the crossover between the power-law
decay and the exponential decay is located at the same posi-
tion for the sf axis shown in Fig. 4�b�, we expect sm2f is a
constant. Therefore, we can conclude that �sm1 ,sm2�
= �kd1 ,kd2 / f�, where kd1 and kd2 are cutoff constants for dis-
sipative waves. Again, �ln�sf1� , ln�sf2����ln�sm1� , ln�sm2��
for kd1=4 and kd2=0.32.

We now turn to the probability distribution of the last
waves Pl�s , f�. In Fig. 5�a�, Pl�s , f� is plotted as a function of
sf . The power-law behavior is expressed as Pl�s , f��s−�l�f�.
We choose the fitting interval �sf1 ,sf2�= �22 ,23�, �22 ,26�,
�22 ,210�, and �22 ,213� and then find �l= 1.15, 1.28, 1.31, and
1.34 for f =10−2, 10−3, 10−4, and 10−5, respectively. The de-
pendence between �l and f shows that �l�f� is a monotoni-
cally decreasing function. Again, using the data �l�1�=0.63
and Dl=1 in the inset of Fig. 1, we obtain �l=2Dl−�l�1�
=1.37 and plot f�l�1�−2DlPl�s , f�= f−1.37Pd as a function of
sfDl =sf in Fig. 5�b�. For the simple scaling, we still need to
consider the correction because that �l is not a constant in
our considered range for f . In the next section, we predict
that �l�f�→1.375 as f →0. Therefore, we expect that �l

=1.375. In Fig. 5�c�, the plot s1.37Pl as a function of sf is
shown. From this figure, we also can expect that �l=�l−�d
=0.005. In Table I, we list the values for Dl, �l, �l, and �l.
Furthermore, we have �sm1 ,sm2�= �kl1 ,kl2 / f�, where kl1 and
kl2 are cutoff constants for last waves. Again,
�ln�sf1� , ln�sf2����ln�sm1� , ln�sm2�� for kl1=4 and kl2=0.08.

The corrections to simple scaling are necessary when �x
is not a constant in the considered range of f . In general, if

FIG. 3. �a� The probability distribution for all waves Pa�s , f� as
a function of s for f =10−2 �dotted line�, 10−3 �dash line�, 10−4 �long
dash line�, and 10−5 �dotted dash line�. Pa�s , f� as a function of sf is
also shown in the inset. �b� f−1.11Pa�s , f� as a function of sf for the
data from �a�. Here, we expect that �a=1. �c� The log-log plot of
s1.11Pa�s , f� as a function of sf for the data from �a�. Here, we
expect that �a=−0.11. The inset shows the same function in the
original scale.

TABLE I. The predicted critical exponents �x, Dx, �x, and �x for
the simple scalings.

�x Dx �x �x

x=a 1.11 1.00 −0.11 1.00

x=d 1.00 1.00 −1.00 0.00

x= l 1.37 1.00 0.005 1.375
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FIG. 4. �a� The probability distribution for dissipative waves
Pd�s , f� as a function of sf . The linear fittings of Pd�s , f� are plotted
as straight lines for f =10−2 �dotted line�, 10−3 �dash line�, 10−4

�long dash line�, and 10−5 �dotted dash line�. The inset shows four
curves with the same line types and slopes as these fitting curves of
Pd�s , f� for f =10−2, 10−3, 10−4, and 10−5, respectively. Here, we
also plot two curves with slopes 0 and −1 which correspond to our
predicted slopes for Pd�s , f →0� �solid line� and Pd�s , f →1� �thick
solid line�, respectively. �b� f−1.0Pd�s , f� as a function of sf for the
data from �a�. Here, we expect that �d=0. �c� The log-log plot of
s1.0Pd�s , f� as a function of sf for the data from �a�. Here, we expect
that �d=−1.0. The inset shows the same function in the original
scale.

FIG. 5. �a� The probability distribution for all waves Pl�s , f� as
a function of sf . The linear fittings of Pl�s , f� are plotted as straight
lines for f =10−2 �dotted line�, 10−3 �dash line�, 10−4 �long dash
line�, and 10−5 �dotted dash line�. The inset shows four curves with
the same line types and slopes as these fitting curves of Pl�s , f� for
f =10−2, 10−3, 10−4, and 10−5, respectively. Here, we also plot two
curves with slopes − 11

8 and −1 which correspond to our predicted
slopes for Pl�s , f →0� �solid line� and Pl�s , f →1� �thick solid line�,
respectively. �b� f−1.37Pl�s , f� as a function of sf for the data from
�a�. Here, we expect that �l=1.375. �c� The log-log plot of
s1.37Pd�s , f� as a function of sf for the data from �a�. Here, we
expect that �d=0.005. The inset shows the same function in the
original scale.
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the correction term �or the effect of the subdominant expo-
nents� is obvious, the equality �x�q�=Dx�q−�x+1� will not
be exactly satisfied �23�. However, in the inset of Fig. 1, we
find this equality is nicely fitted even when �x is not a con-
stant for x=d and l. The reason can be explained by the
insets of Figs. 3�c�, 4�c�, and 5�c� which are the plots for
s�xPx as a function of sf in the original scale. The scaling
function Gx�u� in the original scale is well approximated by
these insets. Originally, �x�q� shown in Eq. �9� will be well
determined if the obtained values of �uq−�xGx�u�du for vari-
ous f are the same. However, from the obtained Gx�u� for
various f shown in the insets of Fig. 3�c�, 4�c�, and 5�c�, we
find that �uq−�xGx�u�du are mainly contributed by the inter-
val �ux

max, � � where Gx�ux
max� is the maximum of Gx�u�. This

intervals �0,ux
max� and �ux

max, � � nearly correspond to the
power-law and tail parts of Px, respectively. Therefore, the
obtained Dx and �x are almost controlled by the tail parts.
Since that tails of curves in the Figs. 4�b�, 4�c�, 5�b�, and 5�c�
are nicely collapsed, we can conclude that �x�q�=Dx�q−�x

+1� is well satisfied.
In Ref. �11�, DeMenech et al. reported that the BTW

sandpile manifests multifractal scaling. They also pointed out
two discoveries of the BTW sandpile. �1� Due to a very
peculiar role played by a class of rare and large avalanche, a
standard simple scaling could be effectively recovered. �2�
The moment of probability distribution are fully determined
by these rare and large avalanches. From their investigation
and our result in the validity of �x�q�=Dx�q−�x+1�, we ex-
pect that the rare and large waves �which correspond to the
tail part of Px� in the DT model play a critical role to main-
tain the simple scaling.

A wave being both dissipative and last is called a dissipa-
tive last wave. In order to understand Pd�s , f� and Pl�s , f�, it
is worth studying Pld�s , f�, the probability distribution of dis-
sipative last waves. We expect Pld�s , f��s−�ld�f� in the
power-law range and calculate the exponent �ld�f� of dissi-
pative last waves. The numerical results show that �ld�f�
�0.39 for each f . Note that �ld in the DT model is almost a
constant but that the corresponding value in the BTW model
is 1 �28�. This deviation of �ld between the BTW and DT
models is due to the different mechanics of dissipation where
BTW is boundary dissipation but DT is bulk dissipation. Fi-
nally, the values of the exponent �x as a function of f are
plotted in Fig. 6 for x=a, d, l, and ld.

IV. ANALYSIS OF DIRECT MEASUREMENT EXPONENTS

Suppose that the total number of all waves for a simula-
tion is Na. Therefore, dNa is the number of all waves be-
tween s and s+ds. In the same simulation, there are Nd dis-
sipative waves. For a given f at a specified wave size s, there
are 4s times to dissipate a grain by probability f . A wave
being nondissipative is in probability �1− f�4s. Therefore, the
probability of a wave being dissipative is �1− �1− f�4s�. Then,
we have that dNd= �1− �1− f�4s�dNa. However, we have
dNa� Pa�s , f�ds and dNd� Pd�s , f�ds. Therefore, the prob-
ability distribution of dissipative wave Pd as a function of s
at a given f can be expressed as follows:

Pd�s, f� = Rd�f��1 − �1 − f�4s�Pa�s, f� , �11�

where Rd�f� is a normalization constant. In the power-law
region sm1�s�sm2, we have Pa�s , f��s−�a and Pd�s , f�
�s−�d�f�. Therefore, from Eq. �11�, s−�d�f���1− �1
− f�4s�s−�a holds only in the interval �sm1 ,sm2�. We expect
that sm1=kd1 and sm2=kd2 / f , where kd1=4 and kd2=0.32 are
from the numerical simulations on dissipative waves.

Consider the following two limitations for f . �i� f →0. For
a finite s, we have �1− �1− f�4s�=4sf +O�f2�. Therefore, we
have s−�d�f���1− �1− f�4s�s−�a = �4sf�s−1�s0 when f →0 and
then we expect that �d�f →0�=0 �29�. Compared with all
waves, dissipative waves are rare when f is very small. Fur-
thermore, for f =0, there is no dissipative wave, i.e., Pd=0. It
is consistent to the conditions sm2=� and �d=0 �29�. �ii� f
→1. Alternatively, when f is close to 1, almost every top-
pling will dissipate grains through Eq. �2�. That means Pd
� Pa. One example is shown in the f =0.1 case of Fig. 2,
where Pd�s , f =0.1�� Pa�s , f =0.1�. Therefore, we conjecture
that �d�f���a=1 at f →1. The inset of Fig. 4�a� shows the
fitting and predicted slopes of the power-law behavior for
various f . The dependence between �d and f satisfies that
�d�f� is a monotonically increasing function.

By the direct calculation of the derivative of ln Pd�s , f�
versus ln�s�, we obtain the measured exponent �dm for dis-
sipative waves as a function of s and f as follows:

�dm�s, f� = −
d ln Pd�s, f�

d ln�s�
= �a +

4s�1 − f�4s ln�1 − f�
1 − �1 − f�4s .

�12�

It must be noted that s is a discrete integer quantity. How-
ever, �dm is obtained from a continuous function. Therefore,
it becomes meaningless by using �dm at any specified integer
s to represent �d. Averaging �dm over s from sm1 to sm2 may
be a good approximation for �d. The function form of Eq.
�12� illustrates that �dm approximates to a function of sf
when s is large and f is small. Therefore, �dm�s , f�s=sm2

is a
constant for each f �sm2f =kd2 is a constant here�. This does
not imply that �d is a constant since �dm�s , f�s=sm1

is differ-
ent for each f . In addition, the probability distribution is
always shown in a double logarithm plot which implies that
the average should be based on d ln�s� �with weight 1 /s� but
not on ds �with weight 1�. Therefore, the approximate value
of �d can be expressed as

�dm�f� =



ln�sm1�

ln�sm2�

�dmd ln�s�

ln�sm2� − ln�sm1�

= �a +
4 ln�1 − f�

�ln�sm2� − ln�sm1��
sm1

sm2 �1 − f�4s

�1 − �1 − f�4s�
ds .

�13�

The above expression can be reduced to the mean slope of
Eq. �11� between sm1 and sm2. Finally, we obtain �dm=�a
− �ln�1− �1− f�4sm2�−ln�1− �1− f�4sm1�� / �ln�sm2�−ln�sm1��.
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Here, we use sm1=4 and sm2=32 at f =10−2 �i.e., kd1=4
and kd2=0.32 from simulations�. Therefore, f =10−3, 10−4,
and 10−5 correspond to sm2=kd2 / f= 320, 3200 and 32000,
respectively. This setting is consistent with the fitting interval
�sf1 ,sf2� for Pd from simulations in the sense of a log-log
plot. The expected �dm�f� is listed in Table II, and we find
that it is close to �d�f� from the simulations. It is interesting
to note that sm2=3.2�sm1=4 at f =0.1 from kd1=4 and kd2
=0.32. This contradicts that sm2�sm1 and explains why the
power-law behavior is broken at f =0.1. Finally, we consider
the deviations of �dm for different �sm1 ,sm2� in the f =10−5

�10−2� case. �i� �kd1 ,kd2�= �4,0.16�, �4,0.32�, and �4,0.64�.
We obtain �dm= 0.037 �0.162�, 0.064 �0.238�, and 0.105
�0.341�, respectively. �ii� �kd1 ,kd2�= �2,0.32�, �4,0.32�, and
�8,0.32�. We obtain �dm= 0.059 �0.193�, 0.064 �0.238�, and
0.069 �0.302�, respectively. We conclude that �dm�f� depends
on the values of sm1 and sm2, and our choice for sm1 and sm2
can satisfy the trend of �d�f�.

In the Sec. III, we define the probability distribution of
dissipative last waves Pld�s , f�. Furthermore, we can also de-
fine the conservative last waves as the nondissipative part of
the last waves. This is obtained from last waves abandoning
dissipative events and retaining nondissipative events. Its
probability distribution is denoted by Pl0�s , f�. In this way,
the ratio of the number of conservative last waves to the

number of last waves at a fixed s is �1− f�4s. Therefore, we
expect

Pl0�s, f� = Rl0�f��1 − f�4sPl�s, f� , �14�

where Rl0�f� is a normalization constant. In addition, the
conservative last waves of the DT model are generally simi-
lar to the last waves of the BTW model in the bulk. The
exponent of the last waves in the BTW model is 11/8 �13�.
Therefore, we expect that Pl0�s−11/8 and Pl�s−�l�f� in the
power-law region. From Eq. �14�, we have s−�l�f���1
− f�−4ss−11/8 in the interval sm1�s�sm2.

Consider two limitations for f . �i� f →0. The DT with L
→� and f →0 is similar to the bulk of BTW with L→�
since the toppling rule is the same for both cases. Therefore,
�l�f →0�=11/8 �13�, which is the value of the last waves for
the BTW. This observation can be also considered by the
asymptotic behavior of Eq. �14� as follows: for a finite s,
limf→0�1− f�−4s=limf→0�1+4sf�=1. We have that s−�l�f�

��1− f�−4ss−11/8�s−11/8 when f →0. Therefore, �l�f →0�
= 11

8 . �ii� f →1. An avalanche should contain only one wave
since strong dissipation terminates topplings, i.e., Pl� Pa
when f →1. Again, an example is shown in Fig. 2 where
Pl�s , f =0.1�� Pa�s , f =0.1�. Therefore, �l�f →1���a=1.
This trend is verified and can be seen in the inset of Fig. 5�a�
which shows the fitting and predicted slopes of power-law
behavior for various f . The dependence between �l and f
satisfies that �l�f� is a monotonically decreasing function.

Repeating the procedure of deriving the exponent from
�lm=−d ln Pl�s� /d ln�s� and then averaging �lm over sm1 to
sm2 on ln�s� scale, we obtain

�lm�f� =
11

8
+

4�sm2 − sm1�ln�1 − f�
ln�sm2� − ln�sm1�

. �15�

If we take sm1=kl1=4 and sm2=kl2 / f =0.08/ f which are con-
sistent with �sf1 ,sf2� for Pl from simulations, then the �lm�f�
will be close to the simulation result �l�f� listed in Table II.
Again, consider the deviations of �lm�f� for different
�sm1 ,sm2� in the f =10−5 �10−2� case. �1� �kl1 ,kl2�= �4,0.04�,
�4,0.08�, and �4,0.16�. We obtain �lm= 1.352 �1.214�, 1.333
�1.143�, and 1.298 �1.027�, respectively. �2� �kl1 ,kl2�
= �2,0.08�, �4,0.08�, and �8,0.08�. We obtain �lm= 1.336
�1.201�, 1.333 �1.143�, and 1.329 �1.053�, respectively. We
conclude that �lm�f� depends on the values of sm1 and sm2,
and our choice for sm1 and sm2 can satisfy the trend of �l�f�.

TABLE II. The obtained critical exponents �d and �l from numerical simulations and the expected
critical exponents �dm and �lm for each f .

f 10−2 5�10−3 10−3 5�10−4 10−4 5�10−5 10−5

�d 0.24±0.02 0.19±0.01 0.13±0.01 0.10±0.01 0.07±0.01 0.06±0.01 0.04±0.01

�dm 0.238 0.192 0.129 0.112 0.086 0.078 0.064

�l 1.15±0.01 1.19±0.02 1.28±0.01 1.29±0.01 1.31±0.01 1.32±0.01 1.34±0.01

�lm 1.143 1.201 1.274 1.290 1.315 1.322 1.333

FIG. 6. The exponents of the direct measurement as a function
of f for all waves �a ���, dissipative waves �d ���, last waves �l

���, and dissipative last waves �ld ���.
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In Table II, �l�f�+�d�f� ��1.39 on average� is almost a
constant for each f . The mathematical formula that Pl of Eq.
�14� multiplied by Pd of Eq. �11� in the power-law region can
be expressed as

Pl�s, f�Pd�s, f� �
�1 − �1 − f�4s�

�1 − f�4s s−1s−11/8 � s−��l�f�+�d�f��.

�16�

Here, we expect that �1− �1− f�4s��1− f�−4s�s� where � is a
constant in the power-law region. When f is small, we have
�1− �1− f�4s��1− f�−4s�s. Therefore, we conjecture that �

=1 and PlPd�ss−1s−11/8=s−11/8, i.e., �l�f�+�d�f�= 11
8

=1.375 which is close to our simulation. In addition, it is
worth noting that PlPd cannot be considered as Pld. From the
discussion of last waves, Pld is proportional to �1− �1
− f�4s�Pl�s , f�. Therefore, in the power-law region we expect
that

Pld�s, f� � s−�ld�f� � �1 − �1 − f�4s��1 − f�−4ss−11/8 � s−3/8.

�17�

Finally, we predict that �ld�f�= 3
8 =0.375 for each f . This re-

sult is also confirmed by our numerical results with �ld
�0.39 on average shown in Fig. 6.

V. DISCUSSION

If a probability distribution satisfies the simple scaling, it
is questionable to use the direct measurement exponent ��x�
to represent the exponent defined by the simple scaling ��x�
�25�. First, �x�f� may differ from �x. We have that �x=�x as
f � fx

c and �x��x as f � fx
c. In this paper, we find �a=�a�f�,

�d��d�f�, and �l��l�f� for 10−2� f �10−5. That is to say
fa

c �10−2, fd
c �10−5, and f l

c�10−5. Secondly, �x may differ

from �x because �x may not be 0. In this paper, we find three
classes for the dependence between �x and �x: �a=−0.11 ��a
is not far from �a�, �d=−1 ��d is obviously different from
�d�, and �l�0 ��l is very close to �l�. In general, �x is easier
to be obtained than �x. However, �x has much more fruitful
significance than �x because of the simple scaling frame-
work. On the other hand, to calculate �x is still helpful to
understand the behavior of our system. First, the scaling
function Gx��u� with exponent �x is directly related to �x. In
addition, the dependence of �x and f is an index to observe
the scaling correction.

In this paper, the obtained exponents �x�f� for direct mea-
surement in the DT sandpiles are consistent with the analytic
expressions. We also point out that the dissipation plays a
very important role in the DT sandpile based on the follow-
ing findings. �1� The simple scaling is effectively recovered
by the large and rare events �the tail part of Px� which are
strongly related to small dissipation. These large and rare
events shown in the insets of Figs. 3�c�, 4�c�, and 5�c� deter-
mine the values of �x. �2� The upper cutoffs sm2 of power-
law behaviors for all, dissipative, and last waves are gov-
erned by dissipations. This is evident that sm2 for all,
dissipative, and last waves in the DT model are all propor-
tional to f−1. However, from Fig. 1, we find that sd �f−1, sa
�f−0.89, and sl �f−0.63. Therefore, dissipation is really impor-
tant since the upper cutoffs sm2 for all, last, and dissipative
waves are only proportional to sd. Finally, our discovery of
exponents may be helpful to the investigate of bulk dissipa-
tion for other SOC models, e.g., the OFC model �30�.
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